Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Diana E Hun
- Philip Boudreaux
- Som Shrestha
- Benjamin Manard
- Kyle Kelley
- Rama K Vasudevan
- Tomonori Saito
- Bryan Maldonado Puente
- Cyril Thompson
- Mahabir Bhandari
- Nolan Hayes
- Sergei V Kalinin
- Stephen Jesse
- Venugopal K Varma
- Zoriana Demchuk
- Achutha Tamraparni
- Adam Aaron
- Alexander I Wiechert
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Bogdan Dryzhakov
- Catalin Gainaru
- Charles D Ottinger
- Charles F Weber
- Costas Tsouris
- Gina Accawi
- Gurneesh Jatana
- Hoyeon Jeon
- Huixin (anna) Jiang
- Jamieson Brechtl
- Jewook Park
- Joanna Mcfarlane
- Jonathan Willocks
- Kai Li
- Karen Cortes Guzman
- Kashif Nawaz
- Kevin M Roccapriore
- Kuma Sumathipala
- Liam Collins
- Mark M Root
- Marti Checa Nualart
- Matt Vick
- Maxim A Ziatdinov
- Mengjia Tang
- Natasha Ghezawi
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Ondrej Dyck
- Peter Wang
- Saban Hus
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Singanallur Venkatakrishnan
- Stephen M Killough
- Steven Randolph
- Vandana Rallabandi
- Yongtao Liu
- Zhenglai Shen

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.