Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Chris Tyler
- Diana E Hun
- Justin West
- Philip Boudreaux
- Ritin Mathews
- Som Shrestha
- Ying Yang
- Tomonori Saito
- Alice Perrin
- Bryan Maldonado Puente
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Mahabir Bhandari
- Nolan Hayes
- Scott Smith
- Steven J Zinkle
- Venugopal K Varma
- Yanli Wang
- Yutai Kato
- Zoriana Demchuk
- Achutha Tamraparni
- Adam Aaron
- Akash Jag Prasad
- Alex Plotkowski
- Amit Shyam
- Brian Gibson
- Brian Post
- Bruce A Pint
- Calen Kimmell
- Catalin Gainaru
- Charles D Ottinger
- Christopher Ledford
- Costas Tsouris
- Emma Betters
- Gerry Knapp
- Gina Accawi
- Greg Corson
- Gs Jung
- Gurneesh Jatana
- Gyoung Gug Jang
- James A Haynes
- Jesse Heineman
- John Potter
- Jong K Keum
- Josh B Harbin
- Karen Cortes Guzman
- Kuma Sumathipala
- Mark M Root
- Mengjia Tang
- Michael Kirka
- Mina Yoon
- Natasha Ghezawi
- Nicholas Richter
- Patxi Fernandez-Zelaia
- Peter Wang
- Radu Custelcean
- Ryan Dehoff
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Singanallur Venkatakrishnan
- Stephen M Killough
- Sumit Bahl
- Sunyong Kwon
- Tim Graening Seibert
- Tony L Schmitz
- Vladimir Orlyanchik
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Zhenglai Shen

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.