Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Amit Shyam
- Brian Post
- Vipin Kumar
- Alex Plotkowski
- David Nuttall
- Soydan Ozcan
- Adam Stevens
- Adam Willoughby
- Dan Coughlin
- James A Haynes
- Jim Tobin
- Pum Kim
- Rishi Pillai
- Ryan Dehoff
- Segun Isaac Talabi
- Sudarsanam Babu
- Sumit Bahl
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Alex Roschli
- Alice Perrin
- Andres Marquez Rossy
- Brandon Johnston
- Brittany Rodriguez
- Bruce A Pint
- Charles Hawkins
- Christopher Fancher
- Craig Blue
- Dean T Pierce
- Erin Webb
- Evin Carter
- Georges Chahine
- Gerry Knapp
- Gordon Robertson
- Halil Tekinalp
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jiheon Jun
- John Lindahl
- Josh Crabtree
- Jovid Rakhmonov
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Marie Romedenne
- Merlin Theodore
- Nadim Hmeidat
- Nicholas Richter
- Oluwafemi Oyedeji
- Peeyush Nandwana
- Peter Wang
- Priyanshi Agrawal
- Rangasayee Kannan
- Roger G Miller
- Ryan Ogle
- Sana Elyas
- Sarah Graham
- Steve Bullock
- Subhabrata Saha
- Sunyong Kwon
- Thomas Feldhausen
- William Peter
- Xianhui Zhao
- Ying Yang
- Yong Chae Lim
- Yukinori Yamamoto
- Zhili Feng

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.