Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Chris Tyler
- Sheng Dai
- Steven Guzorek
- Justin West
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Brian Post
- Ritin Mathews
- Uday Vaidya
- Vipin Kumar
- Zhenzhen Yang
- Craig A Bridges
- David Nuttall
- Shannon M Mahurin
- Soydan Ozcan
- Dan Coughlin
- David Olvera Trejo
- Edgar Lara-Curzio
- Ilja Popovs
- J.R. R Matheson
- Jaydeep Karandikar
- Jim Tobin
- Li-Qi Qiu
- Pum Kim
- Saurabh Prakash Pethe
- Scott Smith
- Segun Isaac Talabi
- Tolga Aytug
- Tyler Smith
- Umesh N MARATHE
- Adam Stevens
- Akash Jag Prasad
- Alexei P Sokolov
- Alex Roschli
- Anees Alnajjar
- Ben Lamm
- Beth L Armstrong
- Brian Gibson
- Brittany Rodriguez
- Bruce Moyer
- Calen Kimmell
- Craig Blue
- Emma Betters
- Eric Wolfe
- Erin Webb
- Evin Carter
- Frederic Vautard
- Georges Chahine
- Greg Corson
- Halil Tekinalp
- Jayanthi Kumar
- Jeremy Malmstead
- Jesse Heineman
- John Lindahl
- John Potter
- Josh B Harbin
- Josh Crabtree
- Julian Charron
- Katie Copenhaver
- Kaustubh Mungale
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Meghan Lamm
- Merlin Theodore
- Nadim Hmeidat
- Nageswara Rao
- Nidia Gallego
- Oluwafemi Oyedeji
- Phillip Halstenberg
- Ryan Ogle
- Sana Elyas
- Santa Jansone-Popova
- Shajjad Chowdhury
- Steve Bullock
- Subhabrata Saha
- Subhamay Pramanik
- Sudarsanam Babu
- Tao Hong
- Thomas Feldhausen
- Tomonori Saito
- Tony L Schmitz
- Vladimir Orlyanchik
- Xianhui Zhao

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.