Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Vipin Kumar
- Brian Post
- David Nuttall
- Lawrence {Larry} M Anovitz
- Soydan Ozcan
- Dan Coughlin
- Edgar Lara-Curzio
- Jim Tobin
- Pum Kim
- Segun Isaac Talabi
- Steven J Zinkle
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Yanli Wang
- Ying Yang
- Yutai Kato
- Adam Stevens
- Adam Willoughby
- Alex Roschli
- Andrew G Stack
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Brittany Rodriguez
- Bruce A Pint
- Charles Hawkins
- Craig Blue
- Eric Wolfe
- Erin Webb
- Evin Carter
- Frederic Vautard
- Georges Chahine
- Halil Tekinalp
- Jeremy Malmstead
- John Lindahl
- Josh Crabtree
- Julian Charron
- Juliane Weber
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Marie Romedenne
- Merlin Theodore
- Nadim Hmeidat
- Nidia Gallego
- Oluwafemi Oyedeji
- Peng Yang
- Rishi Pillai
- Ryan Ogle
- Sai Krishna Reddy Adapa
- Sana Elyas
- Steve Bullock
- Subhabrata Saha
- Sudarsanam Babu
- Thomas Feldhausen
- Tim Graening Seibert
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Xianhui Zhao

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.