Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Brian Post
- Ahmed Hassen
- Andrzej Nycz
- Vlastimil Kunc
- Chris Masuo
- Peter Wang
- Steven Guzorek
- Sudarsanam Babu
- Vipin Kumar
- Alex Walters
- Blane Fillingim
- David Nuttall
- Joshua Vaughan
- Luke Meyer
- Soydan Ozcan
- Thomas Feldhausen
- William Carter
- Adam Stevens
- Alex Roschli
- Brian Gibson
- Chris Tyler
- Dan Coughlin
- J.R. R Matheson
- Jim Tobin
- Lauren Heinrich
- Peeyush Nandwana
- Pum Kim
- Segun Isaac Talabi
- Tyler Smith
- Udaya C Kalluri
- Uday Vaidya
- Umesh N MARATHE
- Yousub Lee
- Akash Jag Prasad
- Amit Shyam
- Brittany Rodriguez
- Calen Kimmell
- Cameron Adkins
- Chelo Chavez
- Christopher Fancher
- Clay Leach
- Craig Blue
- David Olvera Trejo
- Erin Webb
- Evin Carter
- Georges Chahine
- Gordon Robertson
- Halil Tekinalp
- Isha Bhandari
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jesse Heineman
- John Lindahl
- John Potter
- Josh Crabtree
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Liam White
- Merlin Theodore
- Michael Borish
- Nadim Hmeidat
- Oluwafemi Oyedeji
- Rangasayee Kannan
- Riley Wallace
- Ritin Mathews
- Roger G Miller
- Ryan Dehoff
- Ryan Ogle
- Sana Elyas
- Sarah Graham
- Scott Smith
- Steve Bullock
- Subhabrata Saha
- Vincent Paquit
- Vladimir Orlyanchik
- William Peter
- Xianhui Zhao
- Xiaohan Yang
- Yukinori Yamamoto

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

This invention introduces a continuous composite forming process that produces large parts with variable cross-sections and shapes, exceeding the size of the forming machine itself.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Creating a framework (method) for bots (agents) to autonomously, in real time, dynamically divide and execute a complex manufacturing (or any suitable) task in a collaborative, parallel-sequential way without required human interaction.