Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Costas Tsouris
- Steven Guzorek
- Andrew Sutton
- Michelle Kidder
- Radu Custelcean
- Vipin Kumar
- Brian Post
- David Nuttall
- Gyoung Gug Jang
- Soydan Ozcan
- Alexander I Wiechert
- Dan Coughlin
- Gs Jung
- Jim Tobin
- Michael Cordon
- Pum Kim
- Segun Isaac Talabi
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Adam Stevens
- Ajibola Lawal
- Alex Roschli
- Benjamin Manard
- Brittany Rodriguez
- Canhai Lai
- Charles F Weber
- Craig Blue
- Dhruba Deka
- Erin Webb
- Evin Carter
- Georges Chahine
- Halil Tekinalp
- James Parks II
- Jeffrey Einkauf
- Jeremy Malmstead
- Joanna Mcfarlane
- John Lindahl
- Jonathan Willocks
- Jong K Keum
- Josh Crabtree
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Matt Vick
- Melanie Moses-DeBusk Debusk
- Merlin Theodore
- Mina Yoon
- Nadim Hmeidat
- Oluwafemi Oyedeji
- Ryan Ogle
- Sana Elyas
- Sreshtha Sinha Majumdar
- Steve Bullock
- Subhabrata Saha
- Sudarsanam Babu
- Thomas Feldhausen
- Vandana Rallabandi
- Xianhui Zhao
- Yeonshil Park

ORNL has developed a new hybrid additive manufacturing technique to create complex three-dimensional shapes like air foils and wind generator blades much more quickly.

Important of the application is enabling a cost-effective precision manufacturing method Current technology is limited to injection molded individual pi-joints limiting control of pi-joint direction, this creates hurdle in introducing high volume production to the composite in

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.

Innovative microporous polymer captures CO2 and converts it to valuable chemicals at low temperature and pressure.

This invention is about a multifunctional structured packing device that can simultaneously facilitate heat and mass transfer in packed distillation, absorption, and liquid extraction columns, as well as in multiphase reactors.

An innovative rapid manufacturing method for tailored fiber preforms with controlled fiber alignment for enhanced mechanical properties.