Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Vipin Kumar
- Brian Post
- David Nuttall
- Dan Coughlin
- Nadim Hmeidat
- Soydan Ozcan
- Steve Bullock
- Tyler Smith
- Yong Chae Lim
- Zhili Feng
- Adam Stevens
- Brittany Rodriguez
- Jian Chen
- Jim Tobin
- Pum Kim
- Rangasayee Kannan
- Segun Isaac Talabi
- Subhabrata Saha
- Sudarsanam Babu
- Uday Vaidya
- Umesh N MARATHE
- Wei Zhang
- Alex Roschli
- Bryan Lim
- Craig Blue
- Dali Wang
- Erin Webb
- Evin Carter
- Georges Chahine
- Halil Tekinalp
- Jeremy Malmstead
- Jiheon Jun
- John Lindahl
- Josh Crabtree
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Merlin Theodore
- Oluwafemi Oyedeji
- Peeyush Nandwana
- Priyanshi Agrawal
- Roger G Miller
- Ryan Dehoff
- Ryan Ogle
- Sana Elyas
- Sarah Graham
- Thomas Feldhausen
- Tomas Grejtak
- William Peter
- Xianhui Zhao
- Yiyu Wang
- Yukinori Yamamoto

This invention introduces a continuous composite forming process that produces large parts with variable cross-sections and shapes, exceeding the size of the forming machine itself.

Fiberglass, semi-structural insulation for recycled glass fiber and using a low cost silicon with pultruded rods, either fiberglass and a low cost resin, polyester for pultruded rods. It will reduce the use of wood, which is flammable, and still be structural.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

Wire arc additive manufacturing has limited productivity and casting processes require complex molds that are expensive and time-consuming to produce.

ORNL has developed a new hybrid additive manufacturing technique to create complex three-dimensional shapes like air foils and wind generator blades much more quickly.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Welding high temperature and/or high strength materials for aerospace or automobile manufacturing is challenging.