Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Vipin Kumar
- Brian Post
- David Nuttall
- Rafal Wojda
- Dan Coughlin
- Nadim Hmeidat
- Prasad Kandula
- Soydan Ozcan
- Steve Bullock
- Tyler Smith
- Yong Chae Lim
- Zhili Feng
- Adam Stevens
- Brittany Rodriguez
- Jian Chen
- Jim Tobin
- Pum Kim
- Rangasayee Kannan
- Segun Isaac Talabi
- Subhabrata Saha
- Sudarsanam Babu
- Uday Vaidya
- Umesh N MARATHE
- Vandana Rallabandi
- Wei Zhang
- Alex Plotkowski
- Alex Roschli
- Bryan Lim
- Christopher Fancher
- Craig Blue
- Dali Wang
- Erin Webb
- Evin Carter
- Georges Chahine
- Halil Tekinalp
- Jeremy Malmstead
- Jiheon Jun
- John Lindahl
- Josh Crabtree
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Marcio Magri Kimpara
- Merlin Theodore
- Mostak Mohammad
- Oluwafemi Oyedeji
- Omer Onar
- Peeyush Nandwana
- Praveen Kumar
- Priyanshi Agrawal
- Roger G Miller
- Ryan Dehoff
- Ryan Ogle
- Sana Elyas
- Sarah Graham
- Shajjad Chowdhury
- Subho Mukherjee
- Suman Debnath
- Thomas Feldhausen
- Tomas Grejtak
- William Peter
- Xianhui Zhao
- Yiyu Wang
- Yukinori Yamamoto

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

Misalignment issues of the PWPT system have been addressed. The intercell power transformer has been introduced in order to improve load sharing of the system during a mismatch of the primary single-phase coil and the secondary multi-phase coils.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi