Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Corson Cramer
- Steve Bullock
- Steven Guzorek
- Amit Shyam
- Brian Post
- Vipin Kumar
- Alex Plotkowski
- David Nuttall
- Greg Larsen
- James Klett
- Soydan Ozcan
- Trevor Aguirre
- Adam Stevens
- Craig Blue
- Dan Coughlin
- James A Haynes
- Jim Tobin
- John Lindahl
- Pum Kim
- Ryan Dehoff
- Segun Isaac Talabi
- Sudarsanam Babu
- Sumit Bahl
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Alex Roschli
- Alice Perrin
- Andres Marquez Rossy
- Beth L Armstrong
- Brittany Rodriguez
- Charlie Cook
- Christopher Fancher
- Christopher Hershey
- Christopher Ledford
- Daniel Rasmussen
- David J Mitchell
- Dean T Pierce
- Dustin Gilmer
- Erin Webb
- Evin Carter
- Georges Chahine
- Gerry Knapp
- Gordon Robertson
- Halil Tekinalp
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jordan Wright
- Josh Crabtree
- Jovid Rakhmonov
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Merlin Theodore
- Michael Kirka
- Nadim Hmeidat
- Nicholas Richter
- Oluwafemi Oyedeji
- Peeyush Nandwana
- Peter Wang
- Rangasayee Kannan
- Roger G Miller
- Ryan Ogle
- Sana Elyas
- Sarah Graham
- Subhabrata Saha
- Sunyong Kwon
- Thomas Feldhausen
- Tomonori Saito
- Tony Beard
- William Peter
- Xianhui Zhao
- Ying Yang
- Yukinori Yamamoto

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The technologies provide additively manufactured thermal protection system.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).