Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Vipin Kumar
- David Nuttall
- Amit K Naskar
- Brian Post
- Dan Coughlin
- Jaswinder Sharma
- Nadim Hmeidat
- Soydan Ozcan
- Steve Bullock
- Tyler Smith
- Alexey Serov
- Brittany Rodriguez
- Jim Tobin
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Pum Kim
- Segun Isaac Talabi
- Subhabrata Saha
- Uday Vaidya
- Umesh N MARATHE
- Xiang Lyu
- Adam Stevens
- Alex Roschli
- Arit Das
- Benjamin L Doughty
- Beth L Armstrong
- Christopher Bowland
- Craig Blue
- Edgar Lara-Curzio
- Erin Webb
- Evin Carter
- Felix L Paulauskas
- Frederic Vautard
- Gabriel Veith
- Georges Chahine
- Georgios Polyzos
- Halil Tekinalp
- Holly Humphrey
- James Szybist
- Jeremy Malmstead
- John Lindahl
- Jonathan Willocks
- Josh Crabtree
- Julian Charron
- Junbin Choi
- Katie Copenhaver
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Marm Dixit
- Meghan Lamm
- Merlin Theodore
- Michelle Lehmann
- Oluwafemi Oyedeji
- Ritu Sahore
- Robert E Norris Jr
- Ryan Ogle
- Sana Elyas
- Santanu Roy
- Sudarsanam Babu
- Sumit Gupta
- Thomas Feldhausen
- Todd Toops
- Uvinduni Premadasa
- Vera Bocharova
- Xianhui Zhao

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.