Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Amit Shyam
- Brian Post
- Vipin Kumar
- Alex Plotkowski
- Amit K Naskar
- David Nuttall
- Soydan Ozcan
- Adam Stevens
- Dan Coughlin
- James A Haynes
- Jaswinder Sharma
- Jim Tobin
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Pum Kim
- Ryan Dehoff
- Segun Isaac Talabi
- Sudarsanam Babu
- Sumit Bahl
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Alex Roschli
- Alice Perrin
- Andres Marquez Rossy
- Arit Das
- Benjamin L Doughty
- Brittany Rodriguez
- Christopher Bowland
- Christopher Fancher
- Craig Blue
- Dean T Pierce
- Edgar Lara-Curzio
- Erin Webb
- Evin Carter
- Felix L Paulauskas
- Frederic Vautard
- Georges Chahine
- Gerry Knapp
- Gordon Robertson
- Halil Tekinalp
- Holly Humphrey
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- John Lindahl
- Josh Crabtree
- Jovid Rakhmonov
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Merlin Theodore
- Nadim Hmeidat
- Nicholas Richter
- Oluwafemi Oyedeji
- Peeyush Nandwana
- Peter Wang
- Rangasayee Kannan
- Robert E Norris Jr
- Roger G Miller
- Ryan Ogle
- Sana Elyas
- Santanu Roy
- Sarah Graham
- Steve Bullock
- Subhabrata Saha
- Sumit Gupta
- Sunyong Kwon
- Thomas Feldhausen
- Uvinduni Premadasa
- Vera Bocharova
- William Peter
- Xianhui Zhao
- Ying Yang
- Yukinori Yamamoto

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.