Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Andrzej Nycz
- Steven Guzorek
- Brian Post
- Chris Masuo
- Ryan Dehoff
- Vincent Paquit
- Vipin Kumar
- David Nuttall
- Peter Wang
- Adam Stevens
- Alex Walters
- Dan Coughlin
- Michael Kirka
- Nadim Hmeidat
- Rangasayee Kannan
- Soydan Ozcan
- Steve Bullock
- Tyler Smith
- Venkatakrishnan Singanallur Vaidyanathan
- Alex Roschli
- Amir K Ziabari
- Brian Gibson
- Brittany Rodriguez
- Clay Leach
- Jim Tobin
- Joshua Vaughan
- Luke Meyer
- Peeyush Nandwana
- Philip Bingham
- Pum Kim
- Segun Isaac Talabi
- Subhabrata Saha
- Sudarsanam Babu
- Udaya C Kalluri
- Uday Vaidya
- Umesh N MARATHE
- William Carter
- Akash Jag Prasad
- Alice Perrin
- Amit Shyam
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Chelo Chavez
- Christopher Fancher
- Christopher Ledford
- Chris Tyler
- Costas Tsouris
- Craig Blue
- Diana E Hun
- Erin Webb
- Evin Carter
- Georges Chahine
- Gina Accawi
- Gordon Robertson
- Gurneesh Jatana
- Halil Tekinalp
- Isha Bhandari
- J.R. R Matheson
- James Haley
- James Parks II
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jesse Heineman
- John Lindahl
- John Potter
- Josh Crabtree
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Liam White
- Mark M Root
- Merlin Theodore
- Michael Borish
- Obaid Rahman
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Philip Boudreaux
- Riley Wallace
- Ritin Mathews
- Roger G Miller
- Ryan Ogle
- Sana Elyas
- Sarah Graham
- Thomas Feldhausen
- Vladimir Orlyanchik
- William Peter
- Xianhui Zhao
- Xiaohan Yang
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zackary Snow

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

This invention introduces a continuous composite forming process that produces large parts with variable cross-sections and shapes, exceeding the size of the forming machine itself.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Creating a framework (method) for bots (agents) to autonomously, in real time, dynamically divide and execute a complex manufacturing (or any suitable) task in a collaborative, parallel-sequential way without required human interaction.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

Fiberglass, semi-structural insulation for recycled glass fiber and using a low cost silicon with pultruded rods, either fiberglass and a low cost resin, polyester for pultruded rods. It will reduce the use of wood, which is flammable, and still be structural.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.
Red mud residue is an industrial waste product generated during the processing of bauxite ore to extract alumina for the steelmaking industry. Red mud is rich in minerals in bauxite like iron and aluminum oxide, but also heavy metals, including arsenic and mercury.

Wire arc additive manufacturing has limited productivity and casting processes require complex molds that are expensive and time-consuming to produce.