Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Corson Cramer
- Steve Bullock
- Steven Guzorek
- Vipin Kumar
- Brian Post
- David Nuttall
- Greg Larsen
- James Klett
- Singanallur Venkatakrishnan
- Soydan Ozcan
- Trevor Aguirre
- Amir K Ziabari
- Craig Blue
- Dan Coughlin
- Diana E Hun
- Jim Tobin
- John Lindahl
- Michael Kirka
- Philip Bingham
- Philip Boudreaux
- Pum Kim
- Ryan Dehoff
- Segun Isaac Talabi
- Stephen M Killough
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Vincent Paquit
- Adam Stevens
- Alex Roschli
- Beth L Armstrong
- Brittany Rodriguez
- Bryan Maldonado Puente
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Corey Cooke
- Daniel Rasmussen
- David J Mitchell
- Dustin Gilmer
- Erin Webb
- Evin Carter
- Georges Chahine
- Gina Accawi
- Gurneesh Jatana
- Halil Tekinalp
- Jeremy Malmstead
- Jordan Wright
- Josh Crabtree
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Mark M Root
- Merlin Theodore
- Nadim Hmeidat
- Nolan Hayes
- Obaid Rahman
- Oluwafemi Oyedeji
- Peter Wang
- Ryan Kerekes
- Ryan Ogle
- Sally Ghanem
- Sana Elyas
- Subhabrata Saha
- Sudarsanam Babu
- Thomas Feldhausen
- Tomonori Saito
- Tony Beard
- Xianhui Zhao

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

The technologies provide additively manufactured thermal protection system.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

This invention introduces a continuous composite forming process that produces large parts with variable cross-sections and shapes, exceeding the size of the forming machine itself.