Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Vincent Paquit
- Vipin Kumar
- Brian Post
- David Nuttall
- Ryan Dehoff
- Singanallur Venkatakrishnan
- Soydan Ozcan
- Amir K Ziabari
- Dan Coughlin
- Diana E Hun
- Jim Tobin
- Philip Bingham
- Philip Boudreaux
- Pum Kim
- Segun Isaac Talabi
- Stephen M Killough
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Adam Stevens
- Akash Jag Prasad
- Alex Roschli
- Brittany Rodriguez
- Bryan Maldonado Puente
- Calen Kimmell
- Canhai Lai
- Chris Tyler
- Clay Leach
- Corey Cooke
- Costas Tsouris
- Craig Blue
- Erin Webb
- Evin Carter
- Georges Chahine
- Gina Accawi
- Gurneesh Jatana
- Halil Tekinalp
- James Haley
- James Parks II
- Jaydeep Karandikar
- Jeremy Malmstead
- John Lindahl
- Josh Crabtree
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Mark M Root
- Merlin Theodore
- Michael Kirka
- Nadim Hmeidat
- Nolan Hayes
- Obaid Rahman
- Oluwafemi Oyedeji
- Peter Wang
- Ryan Kerekes
- Ryan Ogle
- Sally Ghanem
- Sana Elyas
- Steve Bullock
- Subhabrata Saha
- Sudarsanam Babu
- Thomas Feldhausen
- Vladimir Orlyanchik
- Xianhui Zhao
- Zackary Snow

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

This invention introduces a continuous composite forming process that produces large parts with variable cross-sections and shapes, exceeding the size of the forming machine itself.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.