Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Vipin Kumar
- Ying Yang
- Amit K Naskar
- Brian Post
- David Nuttall
- Soydan Ozcan
- Alice Perrin
- Dan Coughlin
- Jaswinder Sharma
- Jim Tobin
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Pum Kim
- Segun Isaac Talabi
- Steven J Zinkle
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Yanli Wang
- Yutai Kato
- Adam Stevens
- Alex Plotkowski
- Alex Roschli
- Amit Shyam
- Arit Das
- Benjamin L Doughty
- Brittany Rodriguez
- Bruce A Pint
- Christopher Bowland
- Christopher Ledford
- Costas Tsouris
- Craig Blue
- David S Parker
- Edgar Lara-Curzio
- Erin Webb
- Evin Carter
- Felix L Paulauskas
- Frederic Vautard
- Georges Chahine
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Halil Tekinalp
- Holly Humphrey
- James A Haynes
- Jeremy Malmstead
- John Lindahl
- Jong K Keum
- Josh Crabtree
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Merlin Theodore
- Michael Kirka
- Mina Yoon
- Nadim Hmeidat
- Nicholas Richter
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Radu Custelcean
- Robert E Norris Jr
- Ryan Dehoff
- Ryan Ogle
- Sana Elyas
- Santanu Roy
- Steve Bullock
- Subhabrata Saha
- Sudarsanam Babu
- Sumit Bahl
- Sumit Gupta
- Sunyong Kwon
- Thomas Feldhausen
- Tim Graening Seibert
- Uvinduni Premadasa
- Vera Bocharova
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Xianhui Zhao
- Yan-Ru Lin

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.