Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Ali Passian
- Vipin Kumar
- Brian Post
- David Nuttall
- Soydan Ozcan
- Ying Yang
- Adam Willoughby
- Bruce A Pint
- Dan Coughlin
- Edgar Lara-Curzio
- Jim Tobin
- Pum Kim
- Rishi Pillai
- Segun Isaac Talabi
- Steven J Zinkle
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Yanli Wang
- Yutai Kato
- Adam Stevens
- Alex Roschli
- Alice Perrin
- Ben Lamm
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Brittany Rodriguez
- Charles Hawkins
- Christopher Ledford
- Claire Marvinney
- Craig Blue
- Eric Wolfe
- Erin Webb
- Evin Carter
- Frederic Vautard
- Georges Chahine
- Halil Tekinalp
- Harper Jordan
- Jeremy Malmstead
- Jiheon Jun
- Joel Asiamah
- Joel Dawson
- John Lindahl
- Josh Crabtree
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Marie Romedenne
- Meghan Lamm
- Merlin Theodore
- Michael Kirka
- Nadim Hmeidat
- Nance Ericson
- Nidia Gallego
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Priyanshi Agrawal
- Ryan Dehoff
- Ryan Ogle
- Sana Elyas
- Shajjad Chowdhury
- Srikanth Yoginath
- Steve Bullock
- Subhabrata Saha
- Sudarsanam Babu
- Thomas Feldhausen
- Tim Graening Seibert
- Tolga Aytug
- Varisara Tansakul
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Xianhui Zhao
- Yan-Ru Lin
- Yong Chae Lim
- Zhili Feng

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.