Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Andrzej Nycz
- Steven Guzorek
- Brian Post
- Chris Masuo
- Ryan Dehoff
- Vincent Paquit
- Peter Wang
- Vipin Kumar
- Adam Stevens
- Alex Walters
- Beth L Armstrong
- David Nuttall
- Gabriel Veith
- Guang Yang
- Lawrence {Larry} M Anovitz
- Michael Kirka
- Michelle Lehmann
- Rangasayee Kannan
- Singanallur Venkatakrishnan
- Soydan Ozcan
- Tomonori Saito
- Alex Roschli
- Amir K Ziabari
- Brian Gibson
- Clay Leach
- Dan Coughlin
- Ethan Self
- Jaswinder Sharma
- Jim Tobin
- Joshua Vaughan
- Luke Meyer
- Peeyush Nandwana
- Philip Bingham
- Pum Kim
- Robert Sacci
- Segun Isaac Talabi
- Sergiy Kalnaus
- Sudarsanam Babu
- Tyler Smith
- Udaya C Kalluri
- Uday Vaidya
- Umesh N MARATHE
- William Carter
- Akash Jag Prasad
- Alexey Serov
- Alice Perrin
- Amanda Musgrove
- Amit K Naskar
- Amit Shyam
- Andrew G Stack
- Anisur Rahman
- Anna M Mills
- Brittany Rodriguez
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Chanho Kim
- Chelo Chavez
- Christopher Fancher
- Christopher Ledford
- Chris Tyler
- Costas Tsouris
- Craig Blue
- Diana E Hun
- Erin Webb
- Evin Carter
- Felipe Polo Garzon
- Georges Chahine
- Georgios Polyzos
- Gina Accawi
- Gordon Robertson
- Gurneesh Jatana
- Halil Tekinalp
- Ilias Belharouak
- Isha Bhandari
- J.R. R Matheson
- James Haley
- James Parks II
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jesse Heineman
- John Lindahl
- John Potter
- Josh Crabtree
- Julian Charron
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Katie Copenhaver
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Liam White
- Logan Kearney
- Mark M Root
- Matthew S Chambers
- Merlin Theodore
- Michael Borish
- Michael Toomey
- Nadim Hmeidat
- Nancy Dudney
- Nihal Kanbargi
- Obaid Rahman
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Peng Yang
- Philip Boudreaux
- Riley Wallace
- Ritin Mathews
- Roger G Miller
- Ryan Ogle
- Sai Krishna Reddy Adapa
- Sana Elyas
- Sarah Graham
- Steve Bullock
- Subhabrata Saha
- Thomas Feldhausen
- Vera Bocharova
- Vladimir Orlyanchik
- William Peter
- Xiang Lyu
- Xianhui Zhao
- Xiaohan Yang
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zackary Snow

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.