Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Vipin Kumar
- Amit K Naskar
- Brian Post
- David Nuttall
- Kyle Kelley
- Rama K Vasudevan
- Soydan Ozcan
- Dan Coughlin
- Jaswinder Sharma
- Jim Tobin
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Pum Kim
- Segun Isaac Talabi
- Sergei V Kalinin
- Stephen Jesse
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Adam Stevens
- Alex Roschli
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Arit Das
- Benjamin L Doughty
- Bogdan Dryzhakov
- Brittany Rodriguez
- Christopher Bowland
- Craig Blue
- Edgar Lara-Curzio
- Erin Webb
- Evin Carter
- Felix L Paulauskas
- Frederic Vautard
- Georges Chahine
- Halil Tekinalp
- Holly Humphrey
- Hoyeon Jeon
- Huixin (anna) Jiang
- Jamieson Brechtl
- Jeremy Malmstead
- Jewook Park
- John Lindahl
- Josh Crabtree
- Julian Charron
- Kai Li
- Kashif Nawaz
- Katie Copenhaver
- Kevin M Roccapriore
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Liam Collins
- Marti Checa Nualart
- Maxim A Ziatdinov
- Merlin Theodore
- Nadim Hmeidat
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Oluwafemi Oyedeji
- Ondrej Dyck
- Robert E Norris Jr
- Ryan Ogle
- Saban Hus
- Sana Elyas
- Santanu Roy
- Steve Bullock
- Steven Randolph
- Subhabrata Saha
- Sudarsanam Babu
- Sumit Gupta
- Thomas Feldhausen
- Uvinduni Premadasa
- Vera Bocharova
- Xianhui Zhao
- Yongtao Liu

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.