Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Chris Tyler
- Steven Guzorek
- Justin West
- Brian Post
- Ritin Mathews
- Vipin Kumar
- David Nuttall
- Soydan Ozcan
- Dan Coughlin
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Jim Tobin
- Pum Kim
- Scott Smith
- Segun Isaac Talabi
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Adam Stevens
- Akash Jag Prasad
- Alexandre Sorokine
- Alex Roschli
- Brian Gibson
- Brittany Rodriguez
- Calen Kimmell
- Clinton Stipek
- Craig Blue
- Daniel Adams
- Emma Betters
- Erin Webb
- Evin Carter
- Georges Chahine
- Greg Corson
- Halil Tekinalp
- Jeremy Malmstead
- Jesse Heineman
- Jessica Moehl
- John Lindahl
- John Potter
- Josh B Harbin
- Josh Crabtree
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Merlin Theodore
- Nadim Hmeidat
- Oluwafemi Oyedeji
- Philipe Ambrozio Dias
- Ryan Ogle
- Sana Elyas
- Steve Bullock
- Subhabrata Saha
- Sudarsanam Babu
- Taylor Hauser
- Thomas Feldhausen
- Tony L Schmitz
- Viswadeep Lebakula
- Vladimir Orlyanchik
- Xianhui Zhao

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.