Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Chris Tyler
- Steven Guzorek
- Justin West
- Brian Post
- Ritin Mathews
- Vipin Kumar
- David Nuttall
- Soydan Ozcan
- Ying Yang
- Adam Willoughby
- Bruce A Pint
- Dan Coughlin
- David Olvera Trejo
- Edgar Lara-Curzio
- J.R. R Matheson
- Jaydeep Karandikar
- Jim Tobin
- Pum Kim
- Rishi Pillai
- Scott Smith
- Segun Isaac Talabi
- Steven J Zinkle
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Yanli Wang
- Yutai Kato
- Adam Stevens
- Akash Jag Prasad
- Alex Roschli
- Alice Perrin
- Ben Lamm
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Brian Gibson
- Brittany Rodriguez
- Calen Kimmell
- Charles Hawkins
- Christopher Ledford
- Craig Blue
- Emma Betters
- Eric Wolfe
- Erin Webb
- Evin Carter
- Frederic Vautard
- Georges Chahine
- Greg Corson
- Halil Tekinalp
- Jeremy Malmstead
- Jesse Heineman
- Jiheon Jun
- John Lindahl
- John Potter
- Josh B Harbin
- Josh Crabtree
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Marie Romedenne
- Meghan Lamm
- Merlin Theodore
- Michael Kirka
- Nadim Hmeidat
- Nidia Gallego
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Priyanshi Agrawal
- Ryan Dehoff
- Ryan Ogle
- Sana Elyas
- Shajjad Chowdhury
- Steve Bullock
- Subhabrata Saha
- Sudarsanam Babu
- Thomas Feldhausen
- Tim Graening Seibert
- Tolga Aytug
- Tony L Schmitz
- Vladimir Orlyanchik
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Xianhui Zhao
- Yan-Ru Lin
- Yong Chae Lim
- Zhili Feng

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.