Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities
(28)
Researcher
- Ahmed Hassen
- Vivek Sujan
- Vlastimil Kunc
- Steven Guzorek
- Vipin Kumar
- David Nuttall
- Adam Siekmann
- Brian Post
- Dan Coughlin
- Kyle Kelley
- Nadim Hmeidat
- Omer Onar
- Rama K Vasudevan
- Soydan Ozcan
- Steve Bullock
- Subho Mukherjee
- Tyler Smith
- Brittany Rodriguez
- Erdem Asa
- Isabelle Snyder
- Jim Tobin
- Pum Kim
- Segun Isaac Talabi
- Sergei V Kalinin
- Stephen Jesse
- Subhabrata Saha
- Uday Vaidya
- Umesh N MARATHE
- Adam Stevens
- Alex Roschli
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Bogdan Dryzhakov
- Craig Blue
- Erin Webb
- Evin Carter
- Georges Chahine
- Halil Tekinalp
- Hoyeon Jeon
- Huixin (anna) Jiang
- Hyeonsup Lim
- Jamieson Brechtl
- Jeremy Malmstead
- Jewook Park
- John Lindahl
- Josh Crabtree
- Julian Charron
- Kai Li
- Kashif Nawaz
- Katie Copenhaver
- Kevin M Roccapriore
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Liam Collins
- Marti Checa Nualart
- Maxim A Ziatdinov
- Merlin Theodore
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Oluwafemi Oyedeji
- Ondrej Dyck
- Ryan Ogle
- Saban Hus
- Sana Elyas
- Shajjad Chowdhury
- Steven Randolph
- Sudarsanam Babu
- Thomas Feldhausen
- Xianhui Zhao
- Yongtao Liu

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.