Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Vipin Kumar
- David Nuttall
- Brian Post
- Dan Coughlin
- Nadim Hmeidat
- Soydan Ozcan
- Steve Bullock
- Tyler Smith
- Alexey Serov
- Brittany Rodriguez
- Jaswinder Sharma
- Jim Tobin
- Jonathan Willocks
- Pum Kim
- Segun Isaac Talabi
- Subhabrata Saha
- Uday Vaidya
- Umesh N MARATHE
- Xiang Lyu
- Adam Stevens
- Alexander Enders
- Alexander I Wiechert
- Alex Roschli
- Amit K Naskar
- Benjamin Manard
- Beth L Armstrong
- Charles F Weber
- Christopher S Blessinger
- Costas Tsouris
- Craig Blue
- Derek Dwyer
- Erin Webb
- Evin Carter
- Gabriel Veith
- Georges Chahine
- Georgios Polyzos
- Halil Tekinalp
- Holly Humphrey
- James Szybist
- Jeremy Malmstead
- Joanna Mcfarlane
- John Lindahl
- Josh Crabtree
- Julian Charron
- Junbin Choi
- Junghyun Bae
- Katie Copenhaver
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Logan Kearney
- Louise G Evans
- Marm Dixit
- Matt Vick
- Meghan Lamm
- Mengdawn Cheng
- Merlin Theodore
- Michael Toomey
- Michelle Lehmann
- Nihal Kanbargi
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Richard L. Reed
- Ritu Sahore
- Ryan Ogle
- Sana Elyas
- Sudarsanam Babu
- Thomas Feldhausen
- Todd Toops
- Vandana Rallabandi
- Xianhui Zhao

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The lattice collimator places a grid of shielding material in front of a radiation detector to reduce the effect of background from surrounding materials and to enhance the RPM sensitivity to point sources rather than distributed sources that are commonly associated with Natur

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.