Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Lawrence {Larry} M Anovitz
- Alex Roschli
- Andrew F May
- Andrew G Stack
- Ben Garrison
- Brad Johnson
- Charlie Cook
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- Erin Webb
- Evin Carter
- Hsin Wang
- James Klett
- Jeremy Malmstead
- John Lindahl
- Juliane Weber
- Kitty K Mccracken
- Mike Zach
- Nedim Cinbiz
- Oluwafemi Oyedeji
- Peng Yang
- Sai Krishna Reddy Adapa
- Soydan Ozcan
- Tony Beard
- Tyler Smith
- Xianhui Zhao

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

An efficient, eco-friendly metal extraction using ultrasonic leaching, ideal for lithium and magnesium recovery from minerals and waste.