Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Mingyan Li
- Sam Hollifield
- Alex Roschli
- Andrew Lupini
- Brian Weber
- Erin Webb
- Evin Carter
- Isaac Sikkema
- Jeremy Malmstead
- Joseph Olatt
- Kevin Spakes
- Kitty K Mccracken
- Kunal Mondal
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mary A Adkisson
- Oluwafemi Oyedeji
- Ondrej Dyck
- Oscar Martinez
- Soydan Ozcan
- Stephen Jesse
- T Oesch
- Tyler Smith
- Xianhui Zhao

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

This technology provides a device, platform and method of fabrication of new atomically tailored materials. This “synthescope” is a scanning transmission electron microscope (STEM) transformed into an atomic-scale material manipulation platform.