Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Mingyan Li
- Sam Hollifield
- Alexandre Sorokine
- Alex Roschli
- Brian Weber
- Clinton Stipek
- Daniel Adams
- Erin Webb
- Evin Carter
- Isaac Sikkema
- Jeremy Malmstead
- Jessica Moehl
- Joseph Olatt
- Kevin Spakes
- Kitty K Mccracken
- Kunal Mondal
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mary A Adkisson
- Oluwafemi Oyedeji
- Oscar Martinez
- Philipe Ambrozio Dias
- Soydan Ozcan
- Taylor Hauser
- T Oesch
- Tyler Smith
- Viswadeep Lebakula
- Xianhui Zhao

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.