Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Chris Tyler
- Ilias Belharouak
- Justin West
- Ritin Mathews
- Ali Abouimrane
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Ruhul Amin
- Scott Smith
- Akash Jag Prasad
- Alex Roschli
- Brian Gibson
- Brian Post
- Calen Kimmell
- David L Wood III
- Emma Betters
- Erin Webb
- Evin Carter
- Georgios Polyzos
- Greg Corson
- Hongbin Sun
- Jaswinder Sharma
- Jeremy Malmstead
- Jesse Heineman
- John Potter
- Josh B Harbin
- Junbin Choi
- Kitty K Mccracken
- Lu Yu
- Marm Dixit
- Oluwafemi Oyedeji
- Pradeep Ramuhalli
- Soydan Ozcan
- Tony L Schmitz
- Tyler Smith
- Vladimir Orlyanchik
- Xianhui Zhao
- Yaocai Bai
- Zhijia Du

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

Quantifying tool wear is historically challenging task due to variable human interpretation. This capture system will allow for an entire side and the complete end of the cutting tool to be analyzed.

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.