Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
- (-) Isotope Science and Enrichment Directorate (7)
Researcher
- Andrzej Nycz
- Chris Masuo
- Luke Meyer
- Mike Zach
- Soydan Ozcan
- William Carter
- Xianhui Zhao
- Alex Roschli
- Alex Walters
- Andrew F May
- Annetta Burger
- Ben Garrison
- Brad Johnson
- Bruce Hannan
- Bruce Moyer
- Carter Christopher
- Chance C Brown
- Charlie Cook
- Christopher Hershey
- Craig Blue
- Dali Wang
- Daniel Rasmussen
- Debjani Pal
- Debraj De
- Erin Webb
- Evin Carter
- Gautam Malviya Thakur
- Halil Tekinalp
- Hsin Wang
- James Gaboardi
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- Jeremy Malmstead
- Jesse McGaha
- Jian Chen
- John Lindahl
- Joshua Vaughan
- Justin Griswold
- Kevin Sparks
- Kitty K Mccracken
- Kuntal De
- Laetitia H Delmau
- Liz McBride
- Loren L Funk
- Luke Sadergaski
- Mengdawn Cheng
- Nedim Cinbiz
- Oluwafemi Oyedeji
- Padhraic L Mulligan
- Paula Cable-Dunlap
- Peter Wang
- Polad Shikhaliev
- Sandra Davern
- Sanjita Wasti
- Theodore Visscher
- Todd Thomas
- Tony Beard
- Tyler Smith
- Vladislav N Sedov
- Wei Zhang
- Xiuling Nie
- Yacouba Diawara
- Zhili Feng

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.