Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Yong Chae Lim
- Edgar Lara-Curzio
- Rangasayee Kannan
- Steven J Zinkle
- Yanli Wang
- Ying Yang
- Yutai Kato
- Adam Stevens
- Adam Willoughby
- Alex Roschli
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Brian Post
- Bruce A Pint
- Bryan Lim
- Charles Hawkins
- Eric Wolfe
- Erin Webb
- Evin Carter
- Frederic Vautard
- Jeremy Malmstead
- Jiheon Jun
- Kitty K Mccracken
- Marie Romedenne
- Mengdawn Cheng
- Nidia Gallego
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Peeyush Nandwana
- Priyanshi Agrawal
- Rishi Pillai
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Soydan Ozcan
- Sudarsanam Babu
- Tim Graening Seibert
- Tomas Grejtak
- Tyler Smith
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Xianhui Zhao
- Yiyu Wang
- Yukinori Yamamoto
- Zhili Feng

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Welding high temperature and/or high strength materials for aerospace or automobile manufacturing is challenging.