Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Steve Bullock
- Corson Cramer
- Ahmed Hassen
- Greg Larsen
- James Klett
- Nadim Hmeidat
- Trevor Aguirre
- Vlastimil Kunc
- Adam Willoughby
- Rishi Pillai
- Soydan Ozcan
- Steven Guzorek
- Tyler Smith
- Xianhui Zhao
- Zhili Feng
- Alex Roschli
- Beth L Armstrong
- Brandon Johnston
- Brittany Rodriguez
- Bruce A Pint
- Charles Hawkins
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Craig Blue
- Dali Wang
- Dan Coughlin
- Daniel Rasmussen
- David J Mitchell
- David Nuttall
- Dustin Gilmer
- Erin Webb
- Evin Carter
- Halil Tekinalp
- Jeremy Malmstead
- Jian Chen
- Jiheon Jun
- John Lindahl
- Jordan Wright
- Kitty K Mccracken
- Marie Romedenne
- Mengdawn Cheng
- Michael Kirka
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Priyanshi Agrawal
- Sana Elyas
- Sanjita Wasti
- Subhabrata Saha
- Tomonori Saito
- Tony Beard
- Vipin Kumar
- Wei Zhang
- Yong Chae Lim

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

The technologies provide additively manufactured thermal protection system.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Using all polymer formulations, the PIP densification is improved almost 70% over traditional preceramic polymers and PIP material leading to cost and times saving for densifying ceramic composites made from powder or fibers.