Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Singanallur Venkatakrishnan
- Amir K Ziabari
- Diana E Hun
- Hongbin Sun
- Philip Bingham
- Philip Boudreaux
- Prashant Jain
- Ryan Dehoff
- Stephen M Killough
- Vincent Paquit
- Alex Roschli
- Bryan Maldonado Puente
- Corey Cooke
- Erin Webb
- Evin Carter
- Gina Accawi
- Gurneesh Jatana
- Ian Greenquist
- Ilias Belharouak
- Jeremy Malmstead
- Kitty K Mccracken
- Mark M Root
- Mengdawn Cheng
- Michael Kirka
- Nate See
- Nithin Panicker
- Nolan Hayes
- Obaid Rahman
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Peter Wang
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Ruhul Amin
- Ryan Kerekes
- Sally Ghanem
- Soydan Ozcan
- Tyler Smith
- Vishaldeep Sharma
- Vittorio Badalassi
- Xianhui Zhao

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.