Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Amit K Naskar
- Jaswinder Sharma
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Soydan Ozcan
- Xianhui Zhao
- Alex Roschli
- Arit Das
- Benjamin L Doughty
- Brian Sanders
- Christopher Bowland
- Dali Wang
- Edgar Lara-Curzio
- Erin Webb
- Evin Carter
- Felix L Paulauskas
- Frederic Vautard
- Gerald Tuskan
- Halil Tekinalp
- Holly Humphrey
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jeff Foster
- Jeremy Malmstead
- Jerry Parks
- Jian Chen
- John F Cahill
- Josh Michener
- Kitty K Mccracken
- Liangyu Qian
- Mengdawn Cheng
- Oluwafemi Oyedeji
- Paul Abraham
- Paula Cable-Dunlap
- Robert E Norris Jr
- Sanjita Wasti
- Santanu Roy
- Sumit Gupta
- Tyler Smith
- Uvinduni Premadasa
- Vera Bocharova
- Vilmos Kertesz
- Wei Zhang
- Xiaohan Yang
- Yang Liu
- Zhili Feng

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.