Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Blane Fillingim
- Brian Post
- Lauren Heinrich
- Peeyush Nandwana
- Soydan Ozcan
- Sudarsanam Babu
- Thomas Feldhausen
- Xianhui Zhao
- Yousub Lee
- Alexander I Wiechert
- Alex Roschli
- Ben Lamm
- Beth L Armstrong
- Bruce A Pint
- Costas Tsouris
- Dali Wang
- Debangshu Mukherjee
- Erin Webb
- Evin Carter
- Gs Jung
- Gyoung Gug Jang
- Halil Tekinalp
- Jeremy Malmstead
- Jian Chen
- Kitty K Mccracken
- Md Inzamam Ul Haque
- Meghan Lamm
- Mengdawn Cheng
- Olga S Ovchinnikova
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Radu Custelcean
- Ramanan Sankaran
- Sanjita Wasti
- Shajjad Chowdhury
- Steven J Zinkle
- Tim Graening Seibert
- Tolga Aytug
- Tyler Smith
- Vimal Ramanuj
- Weicheng Zhong
- Wei Tang
- Wei Zhang
- Wenjun Ge
- Xiang Chen
- Yanli Wang
- Ying Yang
- Yutai Kato
- Zhili Feng

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.