Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Chris Tyler
- Justin West
- Ritin Mathews
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Scott Smith
- Soydan Ozcan
- Xianhui Zhao
- Akash Jag Prasad
- Alex Roschli
- Brian Gibson
- Brian Post
- Bruce Moyer
- Calen Kimmell
- Dali Wang
- Debjani Pal
- Emma Betters
- Erin Webb
- Evin Carter
- Greg Corson
- Halil Tekinalp
- Jeffrey Einkauf
- Jennifer M Pyles
- Jeremy Malmstead
- Jesse Heineman
- Jian Chen
- John Potter
- Josh B Harbin
- Justin Griswold
- Kitty K Mccracken
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Mengdawn Cheng
- Mike Zach
- Oluwafemi Oyedeji
- Padhraic L Mulligan
- Paula Cable-Dunlap
- Sandra Davern
- Sanjita Wasti
- Tony L Schmitz
- Tyler Smith
- Vladimir Orlyanchik
- Wei Zhang
- Zhili Feng

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.