Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities
(27)
Researcher
- Alexandre Sorokine
- Alex Roschli
- An-Ping Li
- Clinton Stipek
- Daniel Adams
- Erin Webb
- Evin Carter
- Hoyeon Jeon
- Jeremy Malmstead
- Jessica Moehl
- Jewook Park
- Kitty K Mccracken
- Mengdawn Cheng
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Philipe Ambrozio Dias
- Saban Hus
- Soydan Ozcan
- Taylor Hauser
- Tyler Smith
- Viswadeep Lebakula
- Xianhui Zhao

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.