Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Chris Tyler
- Justin West
- Andrzej Nycz
- Ritin Mathews
- Chris Masuo
- Alex Walters
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Kuntal De
- Luke Meyer
- Scott Smith
- Udaya C Kalluri
- William Carter
- Akash Jag Prasad
- Alexander I Kolesnikov
- Alexei P Sokolov
- Bekki Mills
- Biruk A Feyissa
- Brian Gibson
- Brian Post
- Bruce Hannan
- Calen Kimmell
- Clay Leach
- Dave Willis
- Debjani Pal
- Emma Betters
- Greg Corson
- Jesse Heineman
- John Potter
- John Wenzel
- Josh B Harbin
- Joshua Vaughan
- Keju An
- Loren L Funk
- Luke Chapman
- Mark Loguillo
- Matthew B Stone
- Peter Wang
- Polad Shikhaliev
- Shannon M Mahurin
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tomonori Saito
- Tony L Schmitz
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vincent Paquit
- Vladimir Orlyanchik
- Vladislav N Sedov
- Xiaohan Yang
- Yacouba Diawara
- Yun Liu

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.