Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Diana E Hun
- Philip Boudreaux
- Som Shrestha
- Tomonori Saito
- Andrzej Nycz
- Blane Fillingim
- Brian Post
- Bryan Maldonado Puente
- Kuntal De
- Lauren Heinrich
- Mahabir Bhandari
- Nolan Hayes
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Udaya C Kalluri
- Venugopal K Varma
- Yousub Lee
- Zoriana Demchuk
- Achutha Tamraparni
- Adam Aaron
- Alexander I Wiechert
- Alex Walters
- Biruk A Feyissa
- Catalin Gainaru
- Charles D Ottinger
- Chris Masuo
- Clay Leach
- Costas Tsouris
- Debangshu Mukherjee
- Debjani Pal
- Gina Accawi
- Gs Jung
- Gurneesh Jatana
- Gyoung Gug Jang
- Karen Cortes Guzman
- Kuma Sumathipala
- Mark M Root
- Md Inzamam Ul Haque
- Mengjia Tang
- Natasha Ghezawi
- Olga S Ovchinnikova
- Peter Wang
- Radu Custelcean
- Ramanan Sankaran
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Singanallur Venkatakrishnan
- Stephen M Killough
- Vimal Ramanuj
- Vincent Paquit
- Wenjun Ge
- Xiaohan Yang
- Zhenglai Shen

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.