Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Alexey Serov
- Andrzej Nycz
- Eddie Lopez Honorato
- Jaswinder Sharma
- Kuntal De
- Ryan Heldt
- Tyler Gerczak
- Udaya C Kalluri
- Xiang Lyu
- Alex Walters
- Amit K Naskar
- Beth L Armstrong
- Biruk A Feyissa
- Callie Goetz
- Chris Masuo
- Christopher Hobbs
- Clay Leach
- Debjani Pal
- Fred List III
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- James Szybist
- Jonathan Willocks
- Junbin Choi
- Keith Carver
- Khryslyn G Araño
- Logan Kearney
- Marm Dixit
- Matt Kurley III
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nihal Kanbargi
- Richard Howard
- Ritu Sahore
- Rodney D Hunt
- Thomas Butcher
- Todd Toops
- Vincent Paquit
- Xiaohan Yang

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

In order to avoid the limitations and costs due to the use of monolithic components for chemical vapor deposition, we developed a modular system in which the reaction chamber can be composed of a top and bottom cone, nozzle, and in-situ reaction chambers.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.