Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit Shyam
- Alex Plotkowski
- Andrzej Nycz
- Hongbin Sun
- James A Haynes
- Kuntal De
- Prashant Jain
- Ryan Dehoff
- Sumit Bahl
- Udaya C Kalluri
- Adam Stevens
- Alex Walters
- Alice Perrin
- Andres Marquez Rossy
- Biruk A Feyissa
- Brian Post
- Chris Masuo
- Christopher Fancher
- Clay Leach
- Dean T Pierce
- Debjani Pal
- Gerry Knapp
- Gordon Robertson
- Ian Greenquist
- Ilias Belharouak
- Jay Reynolds
- Jeff Brookins
- Jovid Rakhmonov
- Nate See
- Nicholas Richter
- Nithin Panicker
- Peeyush Nandwana
- Peter Wang
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Rangasayee Kannan
- Roger G Miller
- Ruhul Amin
- Sarah Graham
- Sudarsanam Babu
- Sunyong Kwon
- Vincent Paquit
- Vishaldeep Sharma
- Vittorio Badalassi
- William Peter
- Xiaohan Yang
- Ying Yang
- Yukinori Yamamoto

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and