Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ying Yang
- Alexey Serov
- Alice Perrin
- Andrzej Nycz
- Jaswinder Sharma
- Kuntal De
- Steven J Zinkle
- Udaya C Kalluri
- Xiang Lyu
- Yanli Wang
- Yutai Kato
- Alex Plotkowski
- Alex Walters
- Amit K Naskar
- Amit Shyam
- Beth L Armstrong
- Biruk A Feyissa
- Bruce A Pint
- Chris Masuo
- Christopher Ledford
- Clay Leach
- Costas Tsouris
- David S Parker
- Debjani Pal
- Gabriel Veith
- Georgios Polyzos
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Holly Humphrey
- James A Haynes
- James Szybist
- Jonathan Willocks
- Jong K Keum
- Junbin Choi
- Khryslyn G Araño
- Logan Kearney
- Marm Dixit
- Meghan Lamm
- Michael Kirka
- Michael Toomey
- Michelle Lehmann
- Mina Yoon
- Nicholas Richter
- Nihal Kanbargi
- Patxi Fernandez-Zelaia
- Radu Custelcean
- Ritu Sahore
- Ryan Dehoff
- Sumit Bahl
- Sunyong Kwon
- Tim Graening Seibert
- Todd Toops
- Vincent Paquit
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Xiaohan Yang
- Yan-Ru Lin

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.