Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit K Naskar
- Andrzej Nycz
- Blane Fillingim
- Brian Post
- Jaswinder Sharma
- Kuntal De
- Lauren Heinrich
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Udaya C Kalluri
- Yousub Lee
- Alexander I Wiechert
- Alex Walters
- Arit Das
- Benjamin L Doughty
- Biruk A Feyissa
- Chris Masuo
- Christopher Bowland
- Clay Leach
- Costas Tsouris
- Debangshu Mukherjee
- Debjani Pal
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Gs Jung
- Gyoung Gug Jang
- Holly Humphrey
- Md Inzamam Ul Haque
- Olga S Ovchinnikova
- Radu Custelcean
- Ramanan Sankaran
- Robert E Norris Jr
- Santanu Roy
- Sumit Gupta
- Uvinduni Premadasa
- Vera Bocharova
- Vimal Ramanuj
- Vincent Paquit
- Wenjun Ge
- Xiaohan Yang

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.