Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Adam Willoughby
- Rishi Pillai
- Annetta Burger
- Brandon Johnston
- Brian Sanders
- Bruce A Pint
- Carter Christopher
- Chance C Brown
- Charles Hawkins
- Debraj De
- Gautam Malviya Thakur
- James Gaboardi
- Jerry Parks
- Jesse McGaha
- Jiheon Jun
- Kevin Sparks
- Liz McBride
- Marie Romedenne
- Priyanshi Agrawal
- Todd Thomas
- Xiuling Nie
- Yong Chae Lim
- Zhili Feng

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).

The technology provides a transformational approach to digitally manufacture structural alloys with co- optimized strength and environmental resistance

There is a critical need for new antiviral drugs for treating infections of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).