Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Adam M Guss
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Amit K Naskar
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Jaswinder Sharma
- Josh Michener
- Kashif Nawaz
- Kuntal De
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Stephen Jesse
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Alex Walters
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Arit Das
- Arpan Biswas
- Austin Carroll
- Benjamin L Doughty
- Bogdan Dryzhakov
- Brian Fricke
- Brian Sanders
- Chris Masuo
- Christopher Bowland
- Christopher Rouleau
- Clay Leach
- Costas Tsouris
- Daniel Jacobson
- Debangshu Mukherjee
- Debjani Pal
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Gerald Tuskan
- Gerd Duscher
- Gs Jung
- Gyoung Gug Jang
- Holly Humphrey
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilenne Del Valle Kessra
- Ilia N Ivanov
- Isaiah Dishner
- Ivan Vlassiouk
- Jamieson Brechtl
- Jay D Huenemann
- Jeff Foster
- Jerry Parks
- Jewook Park
- Joanna Tannous
- John F Cahill
- Jong K Keum
- Kai Li
- Kyle Davis
- Kyle Gluesenkamp
- Liam Collins
- Liangyu Qian
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Mina Yoon
- Nandhini Ashok
- Neus Domingo Marimon
- Nickolay Lavrik
- Ondrej Dyck
- Paul Abraham
- Radu Custelcean
- Robert E Norris Jr
- Saban Hus
- Sai Mani Prudhvi Valleti
- Santanu Roy
- Serena Chen
- Steven Randolph
- Sumit Gupta
- Sumner Harris
- Utkarsh Pratiush
- Uvinduni Premadasa
- Vera Bocharova
- Vincent Paquit
- Yang Liu
- Yasemin Kaygusuz
- Zhiming Gao

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.