Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Adam M Guss
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Michelle Lehmann
- Tomonori Saito
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Edgar Lara-Curzio
- Ethan Self
- Jaswinder Sharma
- Josh Michener
- Kuntal De
- Robert Sacci
- Sergiy Kalnaus
- Steven J Zinkle
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Yanli Wang
- Ying Yang
- Yutai Kato
- Adam Willoughby
- Alexey Serov
- Alex Walters
- Amanda Musgrove
- Amit K Naskar
- Anisur Rahman
- Anna M Mills
- Austin Carroll
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Brian Sanders
- Bruce A Pint
- Chanho Kim
- Charles Hawkins
- Chris Masuo
- Clay Leach
- Daniel Jacobson
- Debjani Pal
- Eric Wolfe
- Frederic Vautard
- Georgios Polyzos
- Gerald Tuskan
- Ilenne Del Valle Kessra
- Ilias Belharouak
- Isaiah Dishner
- Jay D Huenemann
- Jeff Foster
- Jerry Parks
- Joanna Tannous
- John F Cahill
- Jun Yang
- Khryslyn G Araño
- Kyle Davis
- Liangyu Qian
- Logan Kearney
- Marie Romedenne
- Matthew S Chambers
- Michael Toomey
- Nancy Dudney
- Nandhini Ashok
- Nidia Gallego
- Nihal Kanbargi
- Paul Abraham
- Rishi Pillai
- Serena Chen
- Tim Graening Seibert
- Vera Bocharova
- Vincent Paquit
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Xiang Lyu
- Yang Liu
- Yasemin Kaygusuz

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.