Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Adam M Guss
- Josh Michener
- Joseph Chapman
- Liangyu Qian
- Nicholas Peters
- Andrzej Nycz
- Austin L Carroll
- Biruk A Feyissa
- Carrie Eckert
- Daniel Jacobson
- Hsuan-Hao Lu
- Isaiah Dishner
- Jeff Foster
- John F Cahill
- Joseph Lukens
- Kuntal De
- Muneer Alshowkan
- Serena Chen
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Alex Walters
- Anees Alnajjar
- Brian Sanders
- Brian Williams
- Chris Masuo
- Clay Leach
- Debjani Pal
- Gerald Tuskan
- Ilenne Del Valle Kessra
- Jay D Huenemann
- Jerry Parks
- Joanna Tannous
- Kyle Davis
- Mariam Kiran
- Nandhini Ashok
- Paul Abraham
- Vincent Paquit
- William Alexander
- Yang Liu
- Yasemin Kaygusuz

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This technology identifies enzymatic routes to synthesize amide oligomers with defined sequence to improve polymerization of existing materials or enable polymerization of new materials. Polymers are generally composed of one (e.g. Nylon 6) or two (e.g.

This technology can activate gene expression in a time- and dose-dependent manner in the thermophilic bacterium Clostridium thermocellum. This system will mediate inducible gene expression for strain engineering in C.

The technologies described provides for the upcycling of mixed plastics to muonic acid and 3-hydroxyacids.

This invention is for bacterial strains that can utilize lignocellulose sugars. This will improve the efficiency of bioproduct formation in these strains and reduce the greenhouse-gas emission of an industrial bi

Orphan bHLH enhances plant biomass gain. The orphan bHLH gene has an exclusive nuclear subcellular localization with a transcriptional activator activity.