Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Adam M Guss
- Alexey Serov
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Jaswinder Sharma
- Josh Michener
- Kuntal De
- Udaya C Kalluri
- Vilmos Kertesz
- Xiang Lyu
- Xiaohan Yang
- Alex Walters
- Amit K Naskar
- Austin Carroll
- Beth L Armstrong
- Brian Sanders
- Chris Masuo
- Clay Leach
- Daniel Jacobson
- Debjani Pal
- Gabriel Veith
- Georgios Polyzos
- Gerald Tuskan
- Holly Humphrey
- Ilenne Del Valle Kessra
- Isaiah Dishner
- James Szybist
- Jay D Huenemann
- Jeff Foster
- Jerry Parks
- Joanna Tannous
- John F Cahill
- Jonathan Willocks
- Junbin Choi
- Khryslyn G Araño
- Kyle Davis
- Liangyu Qian
- Logan Kearney
- Marm Dixit
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nandhini Ashok
- Nihal Kanbargi
- Paul Abraham
- Ritu Sahore
- Serena Chen
- Todd Toops
- Vincent Paquit
- Yang Liu
- Yasemin Kaygusuz

The technologies described provides for the upcycling of mixed plastics to muonic acid and 3-hydroxyacids.

This invention is for bacterial strains that can utilize lignocellulose sugars. This will improve the efficiency of bioproduct formation in these strains and reduce the greenhouse-gas emission of an industrial bi

Orphan bHLH enhances plant biomass gain. The orphan bHLH gene has an exclusive nuclear subcellular localization with a transcriptional activator activity.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.

ORNL has developed bacterial strains that can utilize a common plastic co-monomer as a feedstock. This will help enable modern, petroleum-derived plastics to be converted into value-added chemicals.

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).

Free-standing, thin films were fabricated with a binder resulting in nearly an order of magnitude thickness decrease while increasing porosity and activation energy. These effects of such diminished significantly. Free-standing films could be fabricated with a binder.