Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Adam M Guss
- Kashif Nawaz
- Joe Rendall
- Josh Michener
- Zhiming Gao
- Kai Li
- Liangyu Qian
- Praveen Cheekatamarla
- Vishaldeep Sharma
- Andrzej Nycz
- Austin L Carroll
- Biruk A Feyissa
- Carrie Eckert
- Daniel Jacobson
- Isaiah Dishner
- James Manley
- Jamieson Brechtl
- Jeff Foster
- John F Cahill
- Kuntal De
- Kyle Gluesenkamp
- Mingkan Zhang
- Serena Chen
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Alex Walters
- Bo Shen
- Brian Fricke
- Brian Sanders
- Cheng-Min Yang
- Chris Masuo
- Clay Leach
- Debjani Pal
- Easwaran Krishnan
- Gerald Tuskan
- Hongbin Sun
- Huixin (anna) Jiang
- Ilenne Del Valle Kessra
- Jay D Huenemann
- Jerry Parks
- Joanna Tannous
- Kyle Davis
- Melanie Moses-DeBusk Debusk
- Muneeshwaran Murugan
- Nandhini Ashok
- Nickolay Lavrik
- Paul Abraham
- Pengtao Wang
- Troy Seay
- Vincent Paquit
- William Alexander
- Yang Liu
- Yasemin Kaygusuz

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

The heat exchanger is a three-medium heat exchanger with phase change material (PCM) stored in the external fin tubes. It allows the refrigerant flowing inside the internal fin tubes and the air to

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This technology identifies enzymatic routes to synthesize amide oligomers with defined sequence to improve polymerization of existing materials or enable polymerization of new materials. Polymers are generally composed of one (e.g. Nylon 6) or two (e.g.

This technology can activate gene expression in a time- and dose-dependent manner in the thermophilic bacterium Clostridium thermocellum. This system will mediate inducible gene expression for strain engineering in C.

The technologies described provides for the upcycling of mixed plastics to muonic acid and 3-hydroxyacids.

This invention is for bacterial strains that can utilize lignocellulose sugars. This will improve the efficiency of bioproduct formation in these strains and reduce the greenhouse-gas emission of an industrial bi

Orphan bHLH enhances plant biomass gain. The orphan bHLH gene has an exclusive nuclear subcellular localization with a transcriptional activator activity.

The use of class A3 and A2L refrigerants to replace conventional hydrofluorocarbons for their low global warming potential (GWP) presents risks due to leaks of flammable mixtures that could result in fire or explosion.