Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Adam M Guss
- Amit Shyam
- Alex Plotkowski
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- James A Haynes
- Josh Michener
- Kuntal De
- Ryan Dehoff
- Sumit Bahl
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Adam Stevens
- Alex Walters
- Alice Perrin
- Andres Marquez Rossy
- Austin Carroll
- Brian Post
- Brian Sanders
- Chris Masuo
- Christopher Fancher
- Clay Leach
- Daniel Jacobson
- Dean T Pierce
- Debjani Pal
- Gerald Tuskan
- Gerry Knapp
- Gordon Robertson
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jay D Huenemann
- Jay Reynolds
- Jeff Brookins
- Jeff Foster
- Jerry Parks
- Joanna Tannous
- John F Cahill
- Jovid Rakhmonov
- Kyle Davis
- Liangyu Qian
- Nandhini Ashok
- Nicholas Richter
- Paul Abraham
- Peeyush Nandwana
- Peter Wang
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Serena Chen
- Sudarsanam Babu
- Sunyong Kwon
- Vincent Paquit
- William Peter
- Yang Liu
- Yasemin Kaygusuz
- Ying Yang
- Yukinori Yamamoto

This technology can activate gene expression in a time- and dose-dependent manner in the thermophilic bacterium Clostridium thermocellum. This system will mediate inducible gene expression for strain engineering in C.

The technologies described provides for the upcycling of mixed plastics to muonic acid and 3-hydroxyacids.

This invention is for bacterial strains that can utilize lignocellulose sugars. This will improve the efficiency of bioproduct formation in these strains and reduce the greenhouse-gas emission of an industrial bi

Orphan bHLH enhances plant biomass gain. The orphan bHLH gene has an exclusive nuclear subcellular localization with a transcriptional activator activity.

ORNL has developed bacterial strains that can utilize a common plastic co-monomer as a feedstock. This will help enable modern, petroleum-derived plastics to be converted into value-added chemicals.

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).

Due to a genes unique nucleotide sequences acquired through horizontal gene transfer, the gene has a transcriptional repressor activity and innate enzymatic role.

We have developed bacterial strains that can convert sustainable feedstocks and waste feedstocks into chemical precursors for next generation plastics.