Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Brian Post
- Andrzej Nycz
- Chris Tyler
- Adam M Guss
- Chris Masuo
- Peter Wang
- Justin West
- Ryan Dehoff
- Vincent Paquit
- Michael Kirka
- Peeyush Nandwana
- Ritin Mathews
- William Carter
- Alex Walters
- Blane Fillingim
- Joshua Vaughan
- Luke Meyer
- Rangasayee Kannan
- Singanallur Venkatakrishnan
- Sudarsanam Babu
- Thomas Feldhausen
- Adam Stevens
- Ahmed Hassen
- Alex Roschli
- Amir K Ziabari
- Biruk A Feyissa
- Brian Gibson
- Carrie Eckert
- Christopher Ledford
- Clay Leach
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Josh Michener
- Kuntal De
- Lauren Heinrich
- Philip Bingham
- Scott Smith
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Yousub Lee
- Akash Jag Prasad
- Alice Perrin
- Amit Shyam
- Amy Elliott
- Austin Carroll
- Beth L Armstrong
- Brian Sanders
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Chelo Chavez
- Christopher Fancher
- Corson Cramer
- Costas Tsouris
- Craig Blue
- Daniel Jacobson
- Debjani Pal
- Diana E Hun
- Emma Betters
- Erin Webb
- Evin Carter
- Fred List III
- Gerald Tuskan
- Gina Accawi
- Gordon Robertson
- Greg Corson
- Gurneesh Jatana
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Isha Bhandari
- James Haley
- James Klett
- James Parks II
- Jay D Huenemann
- Jay Reynolds
- Jeff Brookins
- Jeff Foster
- Jeremy Malmstead
- Jerry Parks
- Jesse Heineman
- Joanna Tannous
- John F Cahill
- John Lindahl
- John Potter
- Josh B Harbin
- Keith Carver
- Kitty K Mccracken
- Kyle Davis
- Liam White
- Liangyu Qian
- Mark M Root
- Michael Borish
- Nandhini Ashok
- Obaid Rahman
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Paul Abraham
- Philip Boudreaux
- Richard Howard
- Riley Wallace
- Roger G Miller
- Sarah Graham
- Serena Chen
- Soydan Ozcan
- Steve Bullock
- Steven Guzorek
- Thomas Butcher
- Tony L Schmitz
- Trevor Aguirre
- Tyler Smith
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Peter
- Xianhui Zhao
- Yan-Ru Lin
- Yang Liu
- Yasemin Kaygusuz
- Ying Yang
- Yukinori Yamamoto
- Zackary Snow

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.