Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Omer Onar
- Subho Mukherjee
- Vivek Sujan
- Mostak Mohammad
- Vandana Rallabandi
- Adam M Guss
- Erdem Asa
- Josh Michener
- Shajjad Chowdhury
- Adam Siekmann
- Burak Ozpineci
- Emrullah Aydin
- Jon Wilkins
- Liangyu Qian
- Andrzej Nycz
- Austin L Carroll
- Biruk A Feyissa
- Carrie Eckert
- Daniel Jacobson
- Gui-Jia Su
- Isabelle Snyder
- Isaiah Dishner
- Jeff Foster
- John F Cahill
- Kuntal De
- Serena Chen
- Udaya C Kalluri
- Veda Prakash Galigekere
- Vilmos Kertesz
- Xiaohan Yang
- Alex Walters
- Ali Riza Ekti
- Brian Sanders
- Chris Masuo
- Clay Leach
- Debjani Pal
- Gerald Tuskan
- Hong Wang
- Hyeonsup Lim
- Ilenne Del Valle Kessra
- Jay D Huenemann
- Jerry Parks
- Joanna Tannous
- Kyle Davis
- Lingxiao Xue
- Nandhini Ashok
- Nishanth Gadiyar
- Paul Abraham
- Rafal Wojda
- Vincent Paquit
- William Alexander
- Yang Liu
- Yasemin Kaygusuz

Technologies directed to an LCC based induction cooktop architecture for non-ferromagnetic pan are described.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Output Current Estimation and Control in Primary Side LCC Secondary Side Series Compensated Wireless
Wireless charging of electric vehicles require the ability to control the output current in the power transfer system, but that is often not possible as the availability of signals from the secondary side to the primary side is difficult and not always feasible.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This technology identifies enzymatic routes to synthesize amide oligomers with defined sequence to improve polymerization of existing materials or enable polymerization of new materials. Polymers are generally composed of one (e.g. Nylon 6) or two (e.g.

This invention presents a multiport converter (MPC) based power supply to charge the 12 V and 24 V auxiliary batteries in heavy duty (HD) fuel cell (FC) electric vehicle (EV) power train.

This technology can activate gene expression in a time- and dose-dependent manner in the thermophilic bacterium Clostridium thermocellum. This system will mediate inducible gene expression for strain engineering in C.

The technologies described provides for the upcycling of mixed plastics to muonic acid and 3-hydroxyacids.

This invention is for bacterial strains that can utilize lignocellulose sugars. This will improve the efficiency of bioproduct formation in these strains and reduce the greenhouse-gas emission of an industrial bi

This invention presents an integrated strategy to reduce end-user electricity costs and grid carbon emissions by efficiently utilizing Distributed Energy Resources (DER) and grid-scale electrical energy storage systems, such as batteries.